Getting Digital

Corso completo per Data Science e machine learning con R

Develop essential data science & ai skills with expert instruction and practical examples.

Online Course
Self-paced learning
Flexible Schedule
Learn at your pace
Expert Instructor
Industry professional
Certificate
Upon completion
What You'll Learn
Master the fundamentals of data science & ai
Apply best practices and industry standards
Build practical projects to demonstrate your skills
Understand advanced concepts and techniques

Skills you'll gain:

Professional SkillsBest PracticesIndustry Standards
Prerequisites & Target Audience

Skill Level

IntermediateSome prior knowledge recommended

Requirements

Basic understanding of data science & ai
Enthusiasm to learn
Access to necessary software/tools
Commitment to practice

Who This Course Is For

Professionals working in data science & ai
Students and career changers
Freelancers and consultants
Anyone looking to improve their skills
Course Information

About This Course

Questo corso sul Data Science con R nasce per essere un percorso completo su come si è evoluta l'analisi dati negli ultimi anni a partire dall'algebra e dalla statistica classiche. L'obiettivo è accompagnare uno studente che ha qualche base di R in un percorso attraverso le varie anime del Data Science. Cominceremo con un ripasso delle basi di R, a partire dallo scaricamento e installazione, all'impostazione dell'ambiente di lavoro, passando per le strutture, la creazione di funzioni, l'uso degli operatori e di alcune funzioni importanti.

Passeremo poi a vedere come manipolare e gestire un dataset, estrarne dei casi oppure delle variabili, generare dei dataset casuali, calcolare delle misure statistiche di base, creare grafici con i pacchetti Matplotlib e Seaborn. Nelle sezioni successive cominciamo a entrare nel cuore del Data Science con R, a cominciare dal preprocessing: vediamo infatti come ripulire e normalizzare un dataset, e come gestire i dati mancanti. La sezione successiva ci permette di cominciare a impostare dei modelli di machine learning con Python: vedremo tutti gli algoritmi più comuni, sia supervisionati che non supervisionati, come la regressione, semplice, multipla e logistica, il k-nearest neighbors, il Support Vector Machines, il Naive Bayes, gli alberi di decisione e il clustering.

Passeremo poi ai più comuni metodi ensemble, come il Random Forest, il Bagging e il Boosting, e all'analisi del linguaggio naturale e al suo utilizzo nel machine learning per la catalogazione dei testi. Nelle ultime sezioni vedremo alcuni rudimenti di analisi temporale, sistemi di raccomandazione e social media mining.

Provider
Udemy
Estimated Duration
10-20 hours
Language
English
Category
Technology & Programming

Topics Covered

Data Science & AIMachine LearningData Science

Course Details

Format
Online, Self-Paced
Access
Lifetime
Certificate
Upon Completion
Support
Q&A Forum
Course Details
Ready to get started?

View pricing and check out the reviews. See what other learners had to say about the course.

Get started and enroll now
Money-back guarantee might be available
Join thousands of students

This course includes:

Lifetime access to course content
Access on mobile and desktop
Certificate of completion
Downloadable resources

Not sure if this is right for you?

Browse More Data Science & AI Courses

Continue Your Learning Journey

Explore more Data Science & AI courses to deepen your skills and advance your expertise.

ChatGPT & Artificial Intelligence in Marketing - AI MARKETING with Chat GPT.Do you know that you can use artificial inte...
Student Testimonials:The instructor knows the material, and has detailed explanation on every topic he discusses. Has cl...