Getting Digital

Fundamentals in Neural Networks

Develop essential data science & ai skills with expert instruction and practical examples.

Online Course
Self-paced learning
Flexible Schedule
Learn at your pace
Expert Instructor
Industry professional
Certificate
Upon completion
What You'll Learn
Master the fundamentals of data science & ai
Apply best practices and industry standards
Build practical projects to demonstrate your skills
Understand advanced concepts and techniques

Skills you'll gain:

Professional SkillsBest PracticesIndustry Standards
Prerequisites & Target Audience

Skill Level

IntermediateSome prior knowledge recommended

Requirements

Basic understanding of data science & ai
Enthusiasm to learn
Access to necessary software/tools
Commitment to practice

Who This Course Is For

Professionals working in data science & ai
Students and career changers
Freelancers and consultants
Anyone looking to improve their skills
Course Information

About This Course

Deep learning (also known as deep structured learning) is part of a broader family of machine learning methods based on artificial neural networks with representation learning. Learning can be supervised, semi-supervised or unsupervised. Deep-learning architectures such as deep neural networks, deep belief networks, deep reinforcement learning, recurrent neural networks and convolutional neural networks have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance.

This course covers the following three sections: (1) Neural Networks, (2) Convolutional Neural Networks, and (3) Recurrent Neural Networks. You will be receiving around 4 hours of materials on detailed discussion, mathematical description, and code walkthroughs of the three common families of neural networks. The descriptions of each section is summarized below.

Section 1 - Neural Network1. 1 Linear Regression1. 2 Logistic Regression1.

3 Purpose of Neural Network1. 4 Forward Propagation1. 5 Backward Propagation1.

Provider
Udemy
Estimated Duration
10-20 hours
Language
English
Category
Technology & Programming

Topics Covered

Data Science & AI

Course Details

Format
Online, Self-Paced
Access
Lifetime
Certificate
Upon Completion
Support
Q&A Forum
Course Details
Ready to get started?

View pricing and check out the reviews. See what other learners had to say about the course.

Get started and enroll now
Money-back guarantee might be available
Join thousands of students

This course includes:

Lifetime access to course content
Access on mobile and desktop
Certificate of completion
Downloadable resources

Not sure if this is right for you?

Browse More Data Science & AI Courses

Continue Your Learning Journey

Explore more Data Science & AI courses to deepen your skills and advance your expertise.

Hello Learners,Probability is a numerical measure of the likelihood of an event. Probability tells us how often some eve...
Consultancies are implementing AI into their project management consultancy services and winning more business, cutting ...
Ever wondered how AI technologies like OpenAI ChatGPT and GPT-4 really work? In this course, you will learn the foundati...