Getting Digital

Linear Algebra for Data Science and Machine Learning

Develop essential data science & ai skills with expert instruction and practical examples.

Online Course
Self-paced learning
Flexible Schedule
Learn at your pace
Expert Instructor
Industry professional
Certificate
Upon completion
What You'll Learn
Master the fundamentals of data science & ai
Apply best practices and industry standards
Build practical projects to demonstrate your skills
Understand advanced concepts and techniques

Skills you'll gain:

Professional SkillsBest PracticesIndustry Standards
Prerequisites & Target Audience

Skill Level

IntermediateSome prior knowledge recommended

Requirements

Basic understanding of data science & ai
Enthusiasm to learn
Access to necessary software/tools
Commitment to practice

Who This Course Is For

Professionals working in data science & ai
Students and career changers
Freelancers and consultants
Anyone looking to improve their skills
Course Information

About This Course

Linear Algebra is one of the essential foundations for anyone who wants to work in Data Science and Artificial Intelligence. Whether manipulating large datasets, building predictive models, or implementing Machine Learning algorithms, a solid understanding of this mathematical field is indispensable. This course is designed to provide an intuitive and practical approach to the most important concepts, combining theory and Python implementations to ensure you learn by applying.

The course is divided into six sections, each covering a fundamental aspect of Linear Algebra. We begin with an introduction to core concepts, explaining the importance of this discipline and how it connects to Data Science and Machine Learning. Here, we cover elements like scalars, vectors, matrices, and tensors, along with setting up the necessary Python libraries.

We also explore data representation and how linear systems are used to solve mathematical problems. In the second section, we dive deeper into vectors-their properties and applications. Vectors are fundamental components in data manipulation, feature scaling, and even defining the multidimensional spaces used in predictive models.

You'll learn about norms, unit vectors, orthogonal and orthonormal vectors, and visualize these structures intuitively through graphs. Next, we explore matrices, which are widely used to represent data and process large volumes of information. We'll cover key matrix properties, norms, transposition, inversion, and essential decompositions for diverse applications.

Provider
Udemy
Estimated Duration
10-20 hours
Language
English
Category
Technology & Programming

Topics Covered

Data Science & AIMachine LearningData Science

Course Details

Format
Online, Self-Paced
Access
Lifetime
Certificate
Upon Completion
Support
Q&A Forum
Course Details
Ready to get started?

View pricing and check out the reviews. See what other learners had to say about the course.

Get started and enroll now
Money-back guarantee might be available
Join thousands of students

This course includes:

Lifetime access to course content
Access on mobile and desktop
Certificate of completion
Downloadable resources

Not sure if this is right for you?

Browse More Data Science & AI Courses

Continue Your Learning Journey

Explore more Data Science & AI courses to deepen your skills and advance your expertise.

This course teaches the foundational material of statistics covered in an introductory college course, with a focus on m...
In the real-world, data is anything but clean, which is why Python libraries like Pandas are so valuable.If data manipul...
The financial markets are becoming increasingly complex and fast-paced, making it challenging for traders to keep up wit...
Welcome to "Statistics and Excel," your comprehensive guide to mastering the art of data analysis and statistics, enrich...