Getting Digital

Loop Quantum Gravity, Differential Forms, Quantum Geometry

Develop essential physical sciences skills with expert instruction and practical examples.

Online Course
Self-paced learning
Flexible Schedule
Learn at your pace
Expert Instructor
Industry professional
Certificate
Upon completion
What You'll Learn
Master the fundamentals of physical sciences
Apply best practices and industry standards
Build practical projects to demonstrate your skills
Understand advanced concepts and techniques

Skills you'll gain:

Professional SkillsBest PracticesIndustry Standards
Prerequisites & Target Audience

Skill Level

IntermediateSome prior knowledge recommended

Requirements

Basic understanding of physical sciences
Enthusiasm to learn
Access to necessary software/tools
Commitment to practice

Who This Course Is For

Professionals working in physical sciences
Students and career changers
Freelancers and consultants
Anyone looking to improve their skills
Course Information

About This Course

Loop Quantum Gravity: A Comprehensive IntroductionFrom the basics to more advanced topics, we will cover angular momenta, holonomy, quantum geometry, ADM formalism and Palatini action and more (have a look at the syllabus below). There is also an independent section on differential forms, which are important for the final part of the course. Introduction to Loop Quantum Gravity (LQG)Overview of classical gravity and challengesMotivations for Loop Quantum Gravity Discretization of spacetime and fundamental principlesAngular Momenta in LQGProperties of Angular Momentum OperatorsMatrix Representation of Angular MomentumSpin 1/2 Particles in LQGHolonomy and Area OperatorDifferential Equation of the HolonomyConcept of Holonomy in Loop Quantum GravityProperties of the Holonomy, Wilson LoopsDensitized triad in LQGGeneralization of holonomies in LQGQuantum Geometry with Spin-NetworksSpin-Networks and Spin-Network StatesClassical Interpretation of the Densitized TriadVolume Operator in LQGHeisenberg Uncertainty Principle in LQGADM Formalism and TetradsADM FormalismInverse of the Metric Tensor and Projection OperatorFormula for the Determinant of the Metric TensorLie DerivativeAn Introduction to the Tetrads (Generalization of the Triads)Introduction to Differential FormsGeneralization of the Cross Product and Introduction to the Wedge ProductGeometrical Intuition of the Cross and Wedge ProductsCross Product in 2D and 3D Derived from the Wedge ProductWedge Product and Degrees of FormsDifferential Forms and Exterior DerivativeGeneralized Fundamental Theorem of CalculusOverview of the Generalized Fundamental Theorem of CalculusProof of the Generalized Fundamental Theorem of CalculusApplication of the Generalized Theorem of CalculusStokes Theorem in 2D and 3D, Divergence TheoremApplications of Differential FormsTransformation of Volumes in the Language of Differential FormsInvariant Volume Element in D DimensionsSecond Exterior Derivative of a FormApplication of Differential Forms to the Electromagnetic FieldDerivation of Maxwell Equations from Differential FormsHodge Dual and Electromagnetic FormsHodge Dual, Levi Civita Pseudo-TensorExterior Derivative of the Hodge Dual of the Electromagnetic FormDerivation of Remaining Maxwell Equations from Differential FormsExercises with Differential FormsExterior Derivative of a Wedge Product of Differential FormsExercises on Calculating Exterior Derivatives and Hodge DualsSurface Calculation and Hodge Dual ExercisesPalatini action of General Relativity, Path integrals in Loop Quantum GravityPalatini Action of General RelativitySpin Connection, Cartan Equations, Lie Derivatives, and Decomposition of Palatini ActionWheeler DeWitt equation and its relation to loopsBF theoryPath integrals intuition in Loop Quantum GravityHarmonic Analysis over the SU(2) group, Wigner D matricesRepresentation of orbital angular momentum, spherical harmonics, Wigner D matrixOrbital angular momentumSpherical harmonicsLegendre polynomialsWigner D matrices and Spherical HarmonicsAppendix: Some More Mathematical Tools for Advanced UnderstandingTrace of the Logarithm of a Matrix and the DeterminantProof of the Jacobi IdentityNeumann SeriesImportant Properties of Unitary Matrices and Group TheoryMaterial Recommendations for the CourseAdditional resources, readings, and references to enhance understanding (here and there, you will see attachments to the lectures).

This course provides a comprehensive introduction to Loop Quantum Gravity, covering fundamental principles, some mathematical tools, and advanced topics to empower learners with a basic but still deep understanding of this intriguing field.

Provider
Udemy
Estimated Duration
10-20 hours
Language
English
Category
Science & Academia

Topics Covered

Physical Sciences

Course Details

Format
Online, Self-Paced
Access
Lifetime
Certificate
Upon Completion
Support
Q&A Forum
Course Details
Ready to get started?

View pricing and check out the reviews. See what other learners had to say about the course.

Get started and enroll now
Money-back guarantee might be available
Join thousands of students

This course includes:

Lifetime access to course content
Access on mobile and desktop
Certificate of completion
Downloadable resources

Not sure if this is right for you?

Browse More Physical Sciences Courses

Continue Your Learning Journey

Explore more Physical Sciences courses to deepen your skills and advance your expertise.

This course distills research from positive psychology into lessons and steps that you can take to live a happier and mo...
Continuity and DifferentiabilityContinuity and differentiability, derivative of composite functions, chain rule, derivat...
Master Quantum Computing with Python - From Fundamentals to Advanced AlgorithmsThis course is a comprehensive, hands-on ...
What will you learn in this Physics course and why it is necessary?This Physics course will teach you about the basic co...