Getting Digital

Machine Learning con Android utilizando Tensorflow Lite

Develop essential data science & ai skills with expert instruction and practical examples.

Online Course
Self-paced learning
Flexible Schedule
Learn at your pace
Expert Instructor
Industry professional
Certificate
Upon completion
What You'll Learn
Master the fundamentals of data science & ai
Apply best practices and industry standards
Build practical projects to demonstrate your skills
Understand advanced concepts and techniques

Skills you'll gain:

Professional SkillsBest PracticesIndustry Standards
Prerequisites & Target Audience

Skill Level

IntermediateSome prior knowledge recommended

Requirements

Basic understanding of data science & ai
Enthusiasm to learn
Access to necessary software/tools
Commitment to practice

Who This Course Is For

Professionals working in data science & ai
Students and career changers
Freelancers and consultants
Anyone looking to improve their skills
Course Information

About This Course

En este curso veremos cómo implementar nuestros modelos de inteligencia artificial en una aplicación Android utilizando Tensorflow Lite. El tensorFlow lite es un conjunto de herramientas que nos ayuda a ejecutar modelos de TensorFlow en dispositivos móviles, integrados y de IoT. Esta nos permitirá realizar la inferencia en un dispositivo móvil.

Implementaremos desde cero un modelo de "Regresión Lineal" en Python y lo llevaremos a Android utilizando Tensorflow Lite. Implementaremos desde cero un modelo de "Regresión en Múltiple" con normalización de datos y lo llevaremos a Android utilizando Tensorflow Lite. Implementaremos desde cero una "Red Neuronal Convolucional" para clasificar imágenes y llevaremos el modelo a Android utilizando Tensorflow Lite.

Implementaremos un ejemplo de detección de objetos basado en la "Red Neuronal Convolucional" MobileNet. Implementaremos desde cero una "Red Neuronal Artificial" para clasificar dígitos utilizando el dataset MNIST y llevaremos el modelo a Android para reconocer dígitos del 0 al 9 utilizando Tensorflow Lite. Entrenamiento del algoritmo Yolo en Google Colab y despliegue en Aplicación Android.

Veremos también como descargar cientos de imágenes para elaborar datasets de manera automática. Implementaremos la técnica de "Data Augmentation" para incrementar la precisión de nuestros modelos de clasificación de imágenes. Además implementaremos OpenCV para segmentar y reconocer digitos escritos a mano.

Provider
Udemy
Estimated Duration
10-20 hours
Language
English
Category
Technology & Programming

Topics Covered

Data Science & AIMachine Learning

Course Details

Format
Online, Self-Paced
Access
Lifetime
Certificate
Upon Completion
Support
Q&A Forum
Course Details
Ready to get started?

View pricing and check out the reviews. See what other learners had to say about the course.

Get started and enroll now
Money-back guarantee might be available
Join thousands of students

This course includes:

Lifetime access to course content
Access on mobile and desktop
Certificate of completion
Downloadable resources

Not sure if this is right for you?

Browse More Data Science & AI Courses

Continue Your Learning Journey

Explore more Data Science & AI courses to deepen your skills and advance your expertise.

Data science is the field that encompasses the various techniques and methods used to extract insights and knowledge fro...
In the real-world, data is anything but clean, which is why Python libraries like Pandas are so valuable.If data manipul...
Want to ace the AP Statistics exam and also do well in your class? Maybe you are taking an elementary or introductory st...
This course offers an in-depth journey into the world of advanced time series forecasting, specifically tailored for tra...