Machine Learning for Data Analysis: Data Profiling & QA
Develop essential data science & ai skills with expert instruction and practical examples.
Skills you'll gain:
Skill Level
Requirements
Who This Course Is For
About This Course
HEADS UP. This course is now part of The Complete Visual Guide to Machine Learning & Data Science, which combines all 4 Machine Learning courses from Maven Analytics. This course, along with the other individual courses in the series, will be retired soon.
This course is PART 1 of a 4-PART SERIES designed to help you build a strong, foundational understanding of Machine Learning:PART 1: QA & Data ProfilingPART 2: Classification ModelingPART 3: Regression & ForecastingPART 4: Unsupervised LearningThis course makes data science approachable to everyday people, and is designed to demystify powerful Machine Learning tools & techniques without trying to teach you a coding language at the same time. Instead, we'll use familiar, user-friendly tools like Microsoft Excel to break down complex topics and help you understand exactly HOW and WHY machine learning works before you dive into programming languages like Python or R. Unlike most Data Science and Machine Learning courses, you won't write a SINGLE LINE of code.
COURSE OUTLINE:In this Part 1 course, we'll introduce the machine learning landscape and workflow, and review critical QA tips for cleaning and preparing raw data for analysis, including variable types, empty values, range & count calculations, table structures, and more. We'll cover univariate analysis with frequency tables, histograms, kernel densities, and profiling metrics, then dive into multivariate profiling tools like heat maps, violin & box plots, scatter plots, and correlation:Section 1: Machine Learning Intro & LandscapeMachine learning process, definition, and landscapeSection 2: Preliminary Data QAVariable types, empty values, range & count calculations, left/right censoring, etc. Section 3: Univariate ProfilingHistograms, frequency tables, mean, median, mode, variance, skewness, etc.
Section 4: Multivariate ProfilingViolin & box plots, kernel densities, heat maps, correlation, etc. Throughout the course we'll introduce real-world scenarios designed to help solidify key concepts and tie them back to actual business intelligence case studies. You'll use profiling metrics to clean up product inventory data for a local grocery, explore Olympic athlete demographics with histograms and kernel densities, visualize traffic accident frequency with heat maps, and much more.
Topics Covered
Course Details
View pricing and check out the reviews. See what other learners had to say about the course.
This course includes:
Not sure if this is right for you?
Browse More Data Science & AI CoursesContinue Your Learning Journey
Explore more Data Science & AI courses to deepen your skills and advance your expertise.