Machine Learning with Python - Complete Course & Projects
Master data science & ai from fundamentals to advanced concepts with this comprehensive course.
Skills you'll gain:
Skill Level
Requirements
Who This Course Is For
About This Course
Welcome to the Machine Learning in Python - Theory and Implementation course. This course aims to teach students the machine learning algorithms by simplfying how they work on theory and the application of the machine learning algorithms in Python. Course starts with the basics of Python and after that machine learning concepts like evaluation metrics or feature engineering topics are covered in the course.
Lastly machine learning algorithms are covered. By taking this course you are going to have the knowledge of how machine learning algorithms work and you are going to be able to apply the machine learning algorithms in Python. We are going to be covering python fundamentals, pandas, feature engineering, machine learning evaluation metrics, train test split and machine learning algorithms in this course.
Course outline isPython FundamentalsPandas LibraryFeature EngineeringEvaluation of Model PerformancesSupervised vs Unsupervised LearningMachine Learning AlgorithmsThe machine learning algorithms that are going to be covered in this course is going to be Linear Regression, Logistic Regression, K-Nearest Neighbors, Support Vector Machines, Decision Tree, Random Forests and K-Means Clustering. If you are interested in Machine Learning and want to learn the algorithms theories and implementations in Python you can enroll into the course. You can always ask questions from course Q & A section.
Thanks for reading the course description, have a nice day.
Topics Covered
Course Details
View pricing and check out the reviews. See what other learners had to say about the course.
This course includes:
Not sure if this is right for you?
Browse More Data Science & AI CoursesContinue Your Learning Journey
Explore more Data Science & AI courses to deepen your skills and advance your expertise.