Getting Digital

Master the Normal (Gaussian) Distribution in Statistics

Develop essential data science & ai skills with expert instruction and practical examples.

Online Course
Self-paced learning
Flexible Schedule
Learn at your pace
Expert Instructor
Industry professional
Certificate
Upon completion
What You'll Learn
Master the fundamentals of data science & ai
Apply best practices and industry standards
Build practical projects to demonstrate your skills
Understand advanced concepts and techniques

Skills you'll gain:

Professional SkillsBest PracticesIndustry Standards
Prerequisites & Target Audience

Skill Level

IntermediateSome prior knowledge recommended

Requirements

Basic understanding of data science & ai
Enthusiasm to learn
Access to necessary software/tools
Commitment to practice

Who This Course Is For

Professionals working in data science & ai
Students and career changers
Freelancers and consultants
Anyone looking to improve their skills
Course Information

About This Course

The Normal Distribution, also known as the Gaussian Distribution, is a cornerstone of statistics and data analysis. This course provides an in-depth understanding of the Normal Distribution, its properties, and its critical role in inferential statistics. Whether you're a student, professional, or data enthusiast, this course will equip you with the knowledge and skills to apply the Normal Distribution in real-world scenarios.

The course begins by exploring the fundamental concepts of the Normal Distribution, including its shape, properties, and parameters (mean and standard deviation). You'll learn how to calculate z-scores, use standard normal tables, and interpret probabilities associated with the distribution. Key applications across fields such as quality engineering, Six Sigma, business, psychology, healthcare, education, and analytics are covered to highlight the distribution's versatility and importance.

To support your learning, the course provides:Standard Normal Tables: Both positive and negative z-values, along with percentile tables. Step-by-Step Guides: Practical examples to help you apply the concepts to solve real-world problems. Reinforcement Tools: A wide variety of problems and quizzes carefully designed to solidify your understanding.

Final Test: A comprehensive assessment to evaluate your mastery of the material. The course is self-paced and requires approximately 10 or more hours to complete, including time to read the lectures, practice problems, and complete the quizzes. Supporting documents and visual aids are included to ensure a seamless learning experience.

Provider
Udemy
Estimated Duration
10-20 hours
Language
English
Category
Technology & Programming

Topics Covered

Data Science & AI

Course Details

Format
Online, Self-Paced
Access
Lifetime
Certificate
Upon Completion
Support
Q&A Forum
Course Details
Ready to get started?

View pricing and check out the reviews. See what other learners had to say about the course.

Get started and enroll now
Money-back guarantee might be available
Join thousands of students

This course includes:

Lifetime access to course content
Access on mobile and desktop
Certificate of completion
Downloadable resources

Not sure if this is right for you?

Browse More Data Science & AI Courses

Continue Your Learning Journey

Explore more Data Science & AI courses to deepen your skills and advance your expertise.

Autonomous Cars: Computer Vision and Deep Learning The automotive industry is experiencing a paradigm shift from convent...
Artificial Intelligence is an extremely powerful exponential technology which is used in applications ranging from Maxim...
In this course, we cover two analytics techniques: Descriptive statistics and Predictive analytics. For the predictive a...
More than half of the time in any BI and Data science project is spent on cleaning the raw data and preparing it for ana...