Getting Digital

Neural Networks with TensorFlow and PyTorch

Develop essential data science & ai skills with expert instruction and practical examples.

Online Course
Self-paced learning
Flexible Schedule
Learn at your pace
Expert Instructor
Industry professional
Certificate
Upon completion
What You'll Learn
Master the fundamentals of data science & ai
Apply best practices and industry standards
Build practical projects to demonstrate your skills
Understand advanced concepts and techniques

Skills you'll gain:

Professional SkillsBest PracticesIndustry Standards
Prerequisites & Target Audience

Skill Level

IntermediateSome prior knowledge recommended

Requirements

Basic understanding of data science & ai
Enthusiasm to learn
Access to necessary software/tools
Commitment to practice

Who This Course Is For

Professionals working in data science & ai
Students and career changers
Freelancers and consultants
Anyone looking to improve their skills
Course Information

About This Course

TensorFlow is quickly becoming the technology of choice for deep learning and machine learning, because of its ease to develop powerful neural networks and intelligent machine learning applications. Like TensorFlow, PyTorch has a clean and simple API, which makes building neural networks faster and easier. It's also modular, and that makes debugging your code a breeze.

If you're someone who wants to get hands-on with Deep Learning by building and training Neural Networks, then go for this course. This course takes a step-by-step approach where every topic is explicated with the help of a real-world examples. You will begin with learning some of the Deep Learning algorithms with TensorFlow such as Convolutional Neural Networks and Deep Reinforcement Learning algorithms such as Deep Q Networks and Asynchronous Advantage Actor-Critic.

You will then explore Deep Reinforcement Learning algorithms in-depth with real-world datasets to get a hands-on understanding of neural network programming and Autoencoder applications. You will also predict business decisions with NLP wherein you will learn how to program a machine to identify a human face, predict stock market prices, and process text as part of Natural Language Processing (NLP). Next, you will explore the imperative side of PyTorch for dynamic neural network programming.

Finally, you will build two mini-projects, first focusing on applying dynamic neural networks to image recognition and second NLP-oriented problems (grammar parsing). By the end of this course, you will have a complete understanding of the essential ML libraries TensorFlow and PyTorch for developing and training neural networks of varying complexities, without any hassle. Meet Your Expert(s):We have the best work of the following esteemed author(s) to ensure that your learning journey is smooth:Roland Meertens is currently developing computer vision algorithms for self-driving cars.

Provider
Udemy
Estimated Duration
10-20 hours
Language
English
Category
Technology & Programming

Topics Covered

Data Science & AI

Course Details

Format
Online, Self-Paced
Access
Lifetime
Certificate
Upon Completion
Support
Q&A Forum
Course Details
Ready to get started?

View pricing and check out the reviews. See what other learners had to say about the course.

Get started and enroll now
Money-back guarantee might be available
Join thousands of students

This course includes:

Lifetime access to course content
Access on mobile and desktop
Certificate of completion
Downloadable resources

Not sure if this is right for you?

Browse More Data Science & AI Courses

Continue Your Learning Journey

Explore more Data Science & AI courses to deepen your skills and advance your expertise.

In this Word2Vec tutorial, you will learn how to train a Word2Vec Python model and use it to semantically suggest names ...
Course DescriptionLearn to build real time pose detection iPhone app using Posenet deep learning algorithm. Deep learnin...
Within the AI ecosystem, Deep Neural Network or CNN are the most popular sub-fields that promise to change multiple busi...