Learn data science & ai through practical, hands-on projects and real-world applications.
This course will provide a comprehensive introduction to the NumPy library and its capabilities. The course is designed to be hands-on and will include over 140+ practical exercises to help learners gain a solid understanding of how to use NumPy to manipulate and analyze data. The course will cover key concepts such as:Array Routine CreationArange, Zeros, Ones, Eye, Linspace, Diag, Full, Intersect1d, TriArray ManipulationReshape, Expand_dims, Broadcast, Ravel, Copy_to, Shape, Flatten, Transpose, Concatenate, Split, Delete, Append, Resize, Unique, Isin, Trim_zeros, Squeeze, Asarray, Split, Column_stackLogic FunctionsAll, Any, Isnan, EqualRandom SamplingRandom.
rand, Random. cover, Random. shuffle, Random.
exponential, Random. triangularInput and OutputLoad, Loadtxt, Save, Array_strSort, Searching and CountingSorting, Argsort, Partition, Argmax, Argmin, Argwhere, Nonzero, Where, Extract, Count_nonzeroMathematicalMod, Mean, Std, Median, Percentile, Average, Var, Corrcoef, Correlate, Histogram, Divide, Multiple, Sum, Subtract, Floor, Ceil, Turn, Prod, Nanprod, Ransom, Diff, Exp, Log, Reciprocal, Power, Maximum, Square, Round, RootLinear AlgebraLinalg. norm, Dot, Linalg.
det, Linalg. invString OperationChar. add, Char.
View pricing and check out the reviews. See what other learners had to say about the course.
Not sure if this is right for you?
Browse More Data Science & AI CoursesExplore more Data Science & AI courses to deepen your skills and advance your expertise.